
JOHNSON, Generic Data Modeling

:$$:m
i::::::::::::::::::::::;

............................
~;~~~g~~ j:::::::::::::::::::::::::: .+:.:.:.:.:.:.:.: .:.:.:

:~::~~:~::y~;~~:.:.:.:.:.:.:.:.:.:.:.:g fi::::::::::::::::::::::: #:$y::;g ;::::::
:::::::~:p:~~~; :::::p:::::::::::::::::::< :~~~~~~~~:~y~:~: ..:.:0

:::::::::glgt$::*,
~j:j::::::::::::::::::
..................... ;.:.:.:.

.........
........... ‘...Z.

Origins I~~~,~~~~~~ ~

,:~
.. :. :

..............................
jj/

.........................
,:y::*,; .:.:.:+:.:.:.~ :.:.:.:.:.:.:.:.:

..:. .::::::::::::
................. :g$$T.:$,
$g$$:y~.:.:~.*

,;:g:s _., :;$g;$E,
ggg; ~$&g~~:# ::::::::::::::::.: *,:::::::

......................... :,:,:,:,:,:,:,:,: $~::::~, ...
~,g$$.~j,$ <$$$$$ z?,$$;z g;;g

..:.:<.: .: ;:>$;:::E ::::$$gy::; :::::~:~:~:~:~:~
.::::::::::::::::::::::::::::::::.

.:.:.:.:.:.:.:i.:.:.::::::::.::::i:::::
:.:.:.:.:.:.:.:.‘r.r

.:.:.:.:.:.:.~..:.:.:.:.:.:.:.:.:. ,:sgy$$
:::::::::: ~,:~, ;;$jEi; ::2m :~~~::~~~~~::~~~~

.::::::::::::::::,
..::mfi:k pJ.

:::::::::::::::::: c$:?m gg:$Ey :gx:$::::
:~~:~:~:~:::~:~:; .:.:.:.:.:.:.:.:.

::xG Z$$$:::Z#$ $ggg g:*.:>2
.~.y .: ::::Ejj: <k$ZF;i ggg$,i,~b’,~, i:.:$+)q $$$q$$

Generic Data Modeling for
Clinical Repositories

STEPHEN B. JOHNSON, PhD

Abstract Objective: To construct a large-scale clinical repository that accurately captures
a detailed understanding of the data vital to the process of health care and that provides highly
efficient access to patient information for the users of a clinical information system.

Des&n: Conventional approaches to data modeling encourage the development of a highly
specific data schema in order to capture as much information as possible about a given domain.
In contrast, current database technology functions most effectively for clinical databases when a
generic data schema is used. The technique of “generic data modeling” is presented as a method
of reconciling these opposing views of clinical data, using formal operations to transform a
detailed schema into a generic one.

Results: A complex schema consisting of hundreds of entities and representing a rich set of
constraints about the patient care domain is transformed into a generic schema consisting of
roughly two dozen tables. The resulting database design is efficient for patient-oriented queries
and is highly flexible in adapting to the changing information needs of a health care institution,
particularly changes involving the collection of new data elements.

Conclusion: Conventional approaches to data modeling can be used to develop rich, complex
models of clinical data that are useful for understanding and managing the process of patient
care. Generic data modeling techniques can successfully transform a detailed design into an
efficient generic design that is flexible enough to meet the needs of an operational clinical
information system.

n JAMIA. 1996;3:328-339.

Caring for a patient is a complex process that involves
many different professionals, organizations, and ma-
terials. A key strategy pursued by many health care
institutions is to collect as much information as pos-

Affiliation of the author: Department of Medical Informatics,
Columbia University, New York, NY.

Correspondence and reprints: Stephen B. Johnson, PhD, De-
partment of Medical Informatics, Columbia University, 161 Fort
Washington Avenue, DAP 1310, New York, NY, 10032. e-mail:
stephen.johnson@columbia.edu

Received for publication: l/15/96; accepted for publication:
5/13/96.

sible about the process as it unfolds in order to max-
imize sharing among the many participants, deepen
understanding of the process, make improvements,
and reduce cost. Different institutions have different
levels of computerization, and they manage informa-
tion in different ways,‘-’ so the term “clinical reposi-
tory” is used in this article to denote a shared resource
of patient data for the purpose of clinical care (in both
the inpatient and outpatient settings), and the term
“clinical information system” is used to refer to the
collection of computer applications that collect, pro-
cess, and display information maintained in the clin-
ical repository.

The construction of a clinical repository has two main
objectives:

Journal of the American Medical Informatics Association Volume 3 Number 5 Sep / Oct 1996 329

establishing a clear understanding of the data that
are relevant to the health care process, and

implement a database that performs efficiently for
patient care tasks.

The first objective is the province of data modeling,7,8
and the second is the purpose of database design.‘,”
Both of these disciplines are necessary for building a
successful clinical information system; each faces dif-
ferent obstacles.

The goal of this paper is to reconcile the objectives of
data modeling with the techniques of database design
that have been found to be successful in production-
oriented clinical information systems. The technique
of “generic data modeling” is presented as a means
of obtaining an efficient patient database design from
the detailed descriptions that result from conventional
approaches to data modeling. Formal methods are de-
scribed that permit the transformation of a specific
schema (useful as a high-level model of an institu-
tion’s data) into a generic schema (useful for imple-
mentation as a working database). This transforma-
tion helps bridge the gap between data modeling and
database design, and it makes explicit how these two
disciplines are related in creating operational clinical
information systems.

Background

Data modeling produces a formal description of the
data of a given enterprise-a “conceptual schema.”
This formal description represents concepts of interest
to that domain (people, places, equipment, events,
etc.), and it indicates how these entities are concep-
tually related to one another (roles played in events,
membership in organizations, ownership of equip-
ment, location of physical objects, etc.). To be useful
to an enterprise, the conceptual schema must repre-
sent only those facts and constraints in a domain that
are known to be true and on which there is agree-
ment. Thus, the more detailed the conceptual schema,
the more is known about the domain, and the greater
the degree of agreement among the participants in the
enterprise.

Data modeling in health care”,” is a difficult and
time-consuming task because of the vastness of the
domain (a very large number of distinct concepts and
ways in which these concepts may be related to one
another), the complexity of the knowledge, and the
wide variety of participants, all with slightly differing
views about what the process is (physicians, nurses,
therapist, technicians, administrators, clerks, etc.).

Current understanding of the process of health care is
incomplete, and consensus is lacking in certain areas,
which limits the degree of formalization that is pos-
sible.

Database design seeks to produce a database that
meets the needs of an enterprise by using available
computer technology to implement the conceptual
schema.7-10 The choice of technology can have an
enormous impact on what can be achieved in an in-
formation system. In industry today, there is a wide
range of technologies in use: indexed files, hierarchi-
cal databases, relational databases, object-oriented da-
tabases, and heterogeneous systems that may combine
several of these technologies.‘” This paper focuses on
design issues for relational databases because the re-
lational model is relatively easy to understand and
because this technology is currently the most robust
and pervasive for large-scale, production-oriented in-
formation systems.‘3-‘5

Database design for patient care systems must ad-
dress two important requirements: rapid retrieval of
data for individual patients, and adaptability to the
changing information needs of an institution (new ap-
plications, new queries and updates, new data ele-
ments, etc.). A patient’s data must be retrievable as
quickly as possible (less than one second for a typical
transaction); the needs of the patient demand imme-
diate intervention, and the responsibilities of health
care personnel allow only limited time to interact with
an information system. Adaptability is necessary be-
cause formalized knowledge of the health care process
is always incomplete and evolving. As a result, com-
puter applications undergo frequent enhancement,
and new computer systems are constantly being in-
tegrated. The clinical information system must pro-
vide a method to keep up with this environment of
constant change without affecting the performance of
the clinical repository. It would be unacceptable, for
example, to shut down the system several times a
month in order to accommodate application changes.

Given the current state of the art in relational database
technology, the objectives of data modeling and da-
tabase design for patient care are in conflict. Although
a highly detailed conceptual schema helps promote
consistency and understanding of the data used by an
enterprise, such a design will perform poorly when
implemented because a highly detailed schema will
be implemented as a large number of tables. This
means that a given query may have to combine data
from a many different tables by performing “join” op-
erations, which greatly increase query execution
time.‘,“’ Moreover, a highly detailed schema tends to
be very sensitive to change because individual col-

JOHNSON, Generic Data Modeling

Table 1 n

Patient Table with Specific Columns

Patient ID Birthdate sex

12345 06-22-95 M
22222 02-29-52 F

SSN Address Telephone Person ID

123-45-6789 123 E 45 St., NY, NY 212-555-1234 112233
222-22-2222 22 w 22 St., NY, NY 212-555-2222 987654

umns must be added or re-defined. Changes to the
repository schema have been shown to significantly
increase the amount of software maintenance required
for the applications that access the repository.‘4,‘6 In
addition, each alteration to the schema degrades per-
formance, ultimately requiring that the database’s
physical structure be reorganized on disk.‘.” In a large
hospital, in which millions of entries for visits, drugs,
laboratory tests, etc., are made to the repository each
year, reorganization of database tables may require
significant down time (hours or even days).

An alternative strategy is to employ a generic schema
far the clinical repository.‘7-20 A generic schema has a
small number of generalized concepts and thus will
be implemented as a database with only a few tables.
In such a design, related data tend to be present in
the same table, obviating the need for expensive join
operations. In addition, the design is highly flexible,
since different values or “codes” are used to indicate
different data elements instead of specific column
names.” Applications can store new values in the ta-
bles without having to alter the repository schema.
Tables 1 and 2 illustrate this difference in flexibility
for patient demographic data. Adding a new demo-
graphic element such as “ethnicity” requires adding
a new column to Table 1. In contrast, the design of
Table 2 requires only that a new code for ethnicity be
defined to store in the Demographic-Type column; no
change to the table schema is needed.

Using generic patient databases and coded values has
a long and important tradition in health care infor-
mation systems.1-6 Although many implementations
have been chosen, each system employs a generic
schema for the patient database and some form of
“data dictionary” to manage the coded data elements

Table 2 n

Demographic Table with Generic Columns

Patient ID Demographic-Type Demographic-Value

12345 Birthdate 06-22-95
12345 Sex M
12345 SSN 123-45-6789
12345 Address 123 E 45 St., NY, NY
12345 Telephone 212-555-1234
12345 Person ID 112233

that can be stored in the patient database.22,23 This de-
sign was crucial to achieve adequate performance for
patient-oriented queries and to provide flexibility for
change.24*25

The basic steps of generic data modeling for a clinical
information system are:

1. Develop a detailed schema of the medical data that
will be managed by the system.

2. Filter out concepts and relations that do not vary
across patient records.

3. Transform the detailed schema into a generic
schema.

4. Implement the generic schema using a database
management system.

These steps are explained in the sections below. The
technique is presented from the perspective of design-
ing a new database. However, methods are also useful
in other data engineering tasks, such as integrating
legacy database systems and maintaining operational
repositories. Since reverse-engineering and system
maintenance are complex topics in themselves, they
will not be discussed further in this paper.

Conceptual Schema for Clinical Data

A conceptual schema for patient care is a representa-
tion of the data required to manage the health care
process. The developers of a clinical repository con-
struct this “community view” of the institution’s data
by integrating the many local views held by physi-
cians, nurses, administrators, researchers, etc. This
process of integration means resolving many discrep-
ancies and making compromises to produce the best
possible statement about the data on which the insti-
tution’s members can agree.

This data modeling activity can benefit from using a
very high-level model (formalism) with rich seman-

Journal of the American Medical Informatics Association Volume 3 Number 5 Sep / Oct 1996 331

Figure 1 Example of a conceptual graph in the graph-
ical format. The graph depicts a patient whose sex is
male and whose birth date is 6/22/1995. A concept may
be connected to other concepts by one or more relations.
Each concept has a type, which denotes the category to
which it belongs, and a referent, which identifies a spe-
cific individual within that category.

tics. In the data modeling phase, developers should
be concerned with data representation, and not with
issues of data storage and access efficiency. The con-
ceptual schema should correspond as closely as pos-
sible to expert understanding of the medical domain.
Concepts in the schema must use terms that are read-
ily understandable by medical personnel, and the
schema should be free of computer jargon. One way
to confirm these properties is to ensure that the model
can be easily translated into natural language sen-
tences that can be verified by domain experts.

Such a schema typically has many concepts and a rich
classification structure that provides many speciali-
zations and generalizations of medical concepts. A
given concept may belong to many different classes.
The semantics of the model are carried by a rich set
of connections between concepts (e.g., part-whole
structures) that define how concepts in the medical
domain are related to one another.

This paper presents a simple conceptual schema for
clinical data. This schema is only a small fragment of
what would be required in a real clinical information
system. The formalism of Conceptual Graphs (CG)26
was chosen for several reasons. A general-purpose
graphic notation (Fig. l), CG can represent everything
that can be modeled using the Entity Relationship” or
Structural Model,‘” both useful notations for database
modeling. In addition, CG has a standard linear no-
tation that uses conventional typewriter symbols (Fig.
2) and provides a compact medium for developing a
schema. Also, CG can be used to represent the behav-
ior of objects (although that is not a focus of this pa-
per) and so can represent the object schemata pro-
duced by Object Oriented Analysis’ and other.
methods. The advantage of CG is that it has a straight-
forward mapping into predicate calculus, so the for-
mal meaning of each construction is unambiguous
and clear. Finally, several researchers have adopted
CG for various purposes in medical informatics.29-32

Patient: 12346 Gender : mate

The schema is shown in two parts. The first part is
the classification hierarchy of concept types (Fig. 3).
Subtypes are shown indented under a supertype. The
topmost types are Person, Organization, Agent,
Event, Physical Object, and Abstraction. These are
subtypes of the most general type “top,” which is rep-
resented by the symbol T (not shown). Note that a
given type can occur in more than one place in the
hierarchy. For example, Provider is both a Person and
an Agent. The second part of the schema consists of
“canonical graphs,” which define the conceptual re-
lations that pertain to each concept (Fig. 4). Each re-
lation connects a given concept to another concept in
the schema. For example, Service-Event has a recip-
ient (the patient on whose behalf events are per-
formed), an agent (who performs the action), an as-
sistant (a provider who assists the activity), a recorder
(a provider who records information about the event),
and a location (the place within the institution where
the event occurs). Relations are “inherited” from their
supertype. For example, Event has a start-time and an
end-time. Service also has these relations, since Event
is its supertype. This aspect of CG allows a very com-
pact schemata to be created. Some concepts have been
elaborated further in this schema. For example, Num-
ber and Units are not further defined.

Clinical events are the core of the conceptual
schema;11’33 they are events that involve the patient

[Patient : 123451 -
(sex) -> [Gender : male]
(birth-date) -> [Date : 1995-06-221.

Figure 2 Example of a conceptual graph in the linear
format. The graph depicts a patient whose sex is male
and whose birth date is 6/22/1995. Each concept ap-
pears in square brackets, and each relation appears in
parentheses. Relations emanating from a concept are
shown indented underneath, with an arrow pointing to
the related concept.

332 JOHNSON, Generic Data Modeling

Person
Patient
Provider

Organization
Patient-Care-Organization

Hospital
Clinic

Service-Department
Laboratory
Pharmacy

Agent
Provider
Organization

Event
Service

Laboratory-Procedure
Laboratorv-Panel

Chem-7
SMAC

Laboratory-Test
Serum-Sodium-Test
Serum-Potassium-Test

Drug-Administration
Encounter

Inpatient-Visit
Outpatient-Visit

Order
Laboratory-Order
Pharmacy-Order

Physical Object
Chemical

Potassium
Sodium

Drug
Antibiotic

Penicillin
Ampicillin

Specimen
Serum
Blood

Measurable-Substance

Abstraction
Temporal-Abstraction

Frequency
Date

Date-Time
Spatial-Abstraction

Institution-Location
Administration-Route

Quantitative-Abstraction
Quantity
Number
Units

[Person]-
(child4 4Personl

. I L

(ssn) ->[SSN]
(address) -9Addressl
(telephone) $Teleph&e].

[Provider]-
(employed-by) ->
[Patient-Care-Organization].

[Event]-
(recipient) ->[Patient]
(agent) ->[Agent]
(assistant) -s[Provider]
(recorder) ->[Provider]
(location) ->[Location]
(start-time) ->[Date-Time]
(end-time) ->[Date-Time].

[Service]-
(agent) ->[Service-Department]
(occurs-in) ->[Encounter]
(ordered-as) ->[Order].

[Encounter]-
(agent) ->
[Patient-Care-Organization].

[Order]-
(agent) ->[Physician]
(quantity) -z[Number]
(frequency) -s[Frequency]
(event-start) ->[Date-Time]
(event-end) ->[Date-Time]
(occurs-in) ->(Encounter].

[Drug-Administration]-
(aaent) -9Nursel
(q;antity)-->[Quantity]
(ordered-as) ->IPharmacv-Order].

I -

[Laboratory-Procedurel-
(agent) ->[Laboratory].
(ordered-as) -s[Laboratory-Order].

[Laboratory-Order]-
(panel) ->[Laboratory-Panel].

[Pharmacy-Order]-
(dose) ->[Quantity]
(route) ->[Route]
(drug) -z[Drug].

[Chem-fl-
(contains) ->I Sodium-Test1
(contains) +[Potassium-Test].

[Laboratory-Panell-
(contains) ->[Laboratory-Test].

[Laboratory-Test]-
(measures) ->[Measurable-

[Substance]
(samples) -> [Specimen]
(value) ->[Quantity].

[Serum-Sodium-Testl-
(measures) ->[Sodium]
(samples) -> [Serum].

[Serum-Potassium-Test]-
(measures) ->[Potassium]
(samples) -> [Serum].

[Quantity]-
(number) ->[Number]
(units) ->[Units].

Figure 3 Simple type hierarchy for clinical domain.
Subtypes are indented under their supertypes. Asubtype
appears in multiple places in the outline when it has
more than one supertype.

Figure 4 Simple canon of conceptual graphs for clini-
cal domain. More complex graphs can be constructed
from these canonical graphs.

Journal of the American Medical Informatics Association Volume 3 Number 5 Sep / Oct 1996 333

during the provision of care. Clinical events include
admission, discharge, clinic visit, drug administration,
diagnostic procedures, therapeutic procedures, etc.
Starting from the Event concept in the schema, note
that certain key relations link clinical events with
other concepts:

people: patient, health care providers, family mem-
bers, insurance policy holders;

organizations: ancillary departments, inpatient ad-
ministration, medical services, outpatient clinics;

physical objects: drugs, chemicals, specimens;

locations: patient rooms, emergency departments, op-
erating rooms, nursing stations, physician offices;

abstractions: times, quantities.

Filtering Out Patient-Invariant Constructs

The primary purpose of the clinical repository (as de-
fined in this paper) is to provide efficient access to the
data of individual patients in both inpatient and out-
patient settings. Therefore, the primary interest when
implementing the repository .is in the data which can
vary from patient to patient. In developing the con-
ceptual schema in the previous step, some constructs
may be employed that provide background or ex-
planatory information about other concepts in the
schema but which do not vary from patient to patient.
These “patient-invariant” constructs should be elimi-
nated from the operational patient database to reduce
redundancy.

For example, the conceptual schema in Figures 3 and
4 shows a number of concepts and relations that are
useful in clarifying the meaning of other concepts but
which are patient invariant. Laboratory tests have the
relations measures and samples, these identify for
each test the substance measured and the type of sam-
ple analyzed, respectively. These relations define ex-
actly what the Serum-Sodium-Test concept is: a lab-
oratory test that measures sodium levels in serum
samples. In a given patient record, it is sufficient to
record that the patient had a serum sodium test. Facts
about what the test measures and the samples used
are constant across all patients. Therefore, these rela-
tions need not be included in the repository schema
used by the operational clinical information system.

This separation of highly detailed knowledge about
clinical data from the essential facts about the care of
patients results in a more generic schema. This step
and the following one may give rise to a concern that
semantic information is being lost; background
knowledge about tests and drugs is clearly important

and must be maintained somewhere. In many clinical
information systems, this semantic information is
maintained in the clinical data dictionary.‘2,23 The
dictionary will have a concept for each item of data
that can be stored in the repository, such as laboratory
tests, surgical procedures, and drugs. Any patient-in-
variant information that further defines the meaning
of these concepts may also be stored there. Thus, any
constraints that must be imposed on data as they are
collected by applications and stored in the repository
in the operational clinical information can be enforced
using semantic information stored in the dictionary.

This division of the conceptual schema into two
pieces-a generic repository and a dictionary of back-
ground information-has been chosen by many clin-
ical information systems. It is the design feature that
permits the most efficient retrieval of individual pa-
tient data and adaptation to changes in clinical appli-
cations.

Generic Transformations

After patient-invariant constructs have been elimi-
nated, the conceptual schema can be greatly simpli-
fied by collapsing the many detailed concepts into a
small set of generic concepts. In addition, the various
detailed relations that connect concepts in the concep-
tual schema can be collapsed into generic “associa-
tions.” This process of mapping highly detailed con-
cepts into general ones is termed “generic trans-
formation.” In this paper, two important generic
transformations are illustrated. The methods are
shown through examples drawn from Figures 3 and
4, and the formal definitions of the transformations
are given in Appendix A. These transformations are
similar to those in Saltor et al:% but use the semanti-
cally rich model of conceptual graphs rather than the
relational model.

The first generic transformation is called “flattening.”
This transformation is employed to reduce the clas-
sification hierarchy in the original schema, which has
many levels, into a much smaller number of levels
(often a single level). The second transformation is
called “relation merging.” This transformation com-
bines several different relations in the conceptual
schema into a single generic relation.

The result of applying generic transformations to the
conceptual schema is a generic schema that is suitable
for creating a database of patient information. Each
transformation reduces the semantic content of the re-
pository schema by making it more generic. In clinical
information systems that have a sophisticated data
dictionary, these semantic constraints are not lost but
instead are transferred to the dictionary.

JOHNSON, Generic Data Modeling

[Laboratory-Procedure-Event: P127]-
(type+Iot=m-71
(agent) ->[Labofatory]
(contains) ->[Laboratory-Procedure-Event: TO051
(contains) ->[Laboratory-Procedure-Event: T006].

[Laboratory-Procedure-Event: TOOF+
(type)->[Serum-Sodium-Test]
(agent) -r+atwxatory]
(value) ->[Quantity].

[Laboratory-Procedure-Event: TOO6]-
(type)->[Serum-Potassium-Test]
(agent) ->ILaboratory]
(value) ->[Quantity].

Figure 5 Three different instances of the Lab-Proce-
dure-Event concept: a Chem-7 panel and two tests (Se-
rum-Sodium-Test, Serum-Potassium-Test), which are
part of the panel.

Flattening Example

Consider the hierarchy of laboratory procedure con-
cepts in Figures 3 and 4. The types are Lab-Procedure,
Lab-Panel, Chem-7, SMAC, Lab-Test, Serum-So-
dium-Test, and Serum-Potassium-Test. In a real
schema, there would be hundreds of panels and tests.
When the flattening transformation (defined in Ap-
pendix A) is applied to this portion of the schema, the
distinctions among these subtypes disappear. The
many subtypes merge into a single new type, which
can be called Lab-Procedure-Event. In addition, all
the relations in these graphs are combined into one
graph. As explained in the previous section, the re-
lations for measures and samples are not included;
they are considered to be descriptive information that
belongs in the dictionary. All of these concepts col-
lapse into the following single concept:

[Lab-Procedure-Event>
(type) -[Lab-Procedure]
(agent) +[Laboratory]
(contains) +[Lab-Procedure-Event]
(value) -+[Quantity].

This graph says that every Lab-Procedure-Event may
contain other procedures (a property of panels) and
that Lab-Procedure-Event may have a value (a prop-
erty of Lab-Test).

Figure 5 shows three ways of filling in this graph, for
a Chem-7 panel, and two tests (Serum-Sodium-Test,
Serum-Potassium-Test) that are part of the panel.
This example demonstrates why it is necessary to add
the new relation “type” to the Lab-Procedure-Event
graph. Without this relation, it would be impossible
to determine what kind of panel or test is denoted by
each graph. In general, whenever a hierarchy of con-
cepts is collapsed, it is necessary to add the new re-

lation “type” in order to keep track of which specific
member of the hierarchy is being referenced.

A complete conceptual schema would have hundreds
of concepts for panels and individual laboratory tests.
The generic schema need contain only one. Each time
a Lab-Procedure-Event concept is stored in a patient
record, the value of the relation “type” will be the
identifier of one of the Lab-Procedure concepts. This
identifier can be thought of as a pointer into the clin-
ical data dictionary, where additional information
about the panel or laboratory test may be obtained.
The flattening transformation is the key to the flexi-
bility of the repository: new identifiers can be added
to the dictionary at any time, and the repository
schema does not have to change.

Relation Merging Example

A given concept in the conceptual schema may have
many detailed relations in it (directly or through in-
heritance). These relations become columns in a rela-
tional implementation (or fields in a file system, in-
stance variables in an object-oriented system). Many
detailed columns lead to inflexibility in the repository.
As the clinical information system evolves, new col-
umns must be added; this is extremely costly when
tables are very large.14”6 A solution to this design is to
merge multiple relations into a single, generic rela-
tion.

As an example, consider the Patient entity in the con-
ceptual schema in Figure 4. This concept has relations
for the date of birth, sex, social security number, home
address, and telephone number:

[Patient]-
(birth-date) +[Date]
(sex) +[Gender]
(ssn) +[SSN]
(address) -[Address]
(telephone) +[Telephone].

This concept can be implemented in a relational da-
tabase simply by creating a table, the columns of
which have these names and data types. However,
many other relations are possible for patient demo-
graphics, so administrators of the repository may find
themselves frequently adding new columns to this ta-
ble.

An alternative is to merge these relations into a single
generic relation by applying the relation merging
transformation (formally defined in Appendix A). The
result is two concepts: the original Patient concept,
which has a single generic relation, and a new concept
called Demographic:

Journal of the American Medical Informatics Association Volume 3 Number 5 Sep / Oct 1996 335

[Patient]-
(attribute) -+[Demographic].

[Demographicl-
(type) *[Demographic-Type]
(value) +[Demographic-Value].

This transformation promotes the original relations
(birth date, sex, ssn, address, telephone) into seman-
tic types, which are made into subtypes of a new type
called Demographic-Type. The various values that
these relations could have are grouped under a new
type called Demographic-Value. Figure 6 shows how
this generic schema might be filled in. This schema is
extremely simple and very flexible. Whenever a new
demographic attribute is needed (e.g., ethnicity), it is
necessary only to assign a new identifier for it in the
dictionary. A relational implementation of this schema
is shown in Table 2 and discussed in the following
section.

For another example, consider the various events that
can be related to a given Service-Event in the schema:

[Service-Event]-
. . .
(occurs-in) +[Encounter]
(ordered-as) +[Order-Event].

This graph states that a Service-Event may occur as
part of an Encounter and may be requested by a given
Order. A complete schema would contain many other
relations to different types of events. To obtain a more
generic schema, the relation merging transformation
can be applied. This transformation merges the spe-
cific relations into a single generic relation. The result
in this example is the statement that a Service-Event
is related to one more Related-Event concept.

[Service-Event]-

irelated-to) -[Related-Event].
[Related-Event]-

(type) +[Event-Relation]
(event) -[Event].

The relations “occurs-in” and “ordered-as” are pro-
moted to semantic types, which are both subtypes of
a new type, Event-Relation. When a particular Re-
lated-Event is filled in for a given patient’s Service-
Event, the value of the relation “type” is an identifier
of one of the Event-Relation concepts (Fig. 7). This
identifier serves as a pointer into the dictionary, where
additional knowledge about event relations may be
maintained. This knowledge might include a type hi-
erarchy of event relations and information about ex-

[Patient: 12345]-
(attribute) ->[Demographic: DOOl]
(attribute) ->[Demographic: DO021
(attribute) ->[Demographic: D003].

[Demographic: DOOl]-
(type) ->[Birth-Date]
(value) ->[Date: 1995-O&22].

[Demographic: DOO2]-
(type) ->tsexl
(value) ->[Gender: male].

[Demographic: D003]-
(type) ->WNl
(value) ->[Number: 123-45-67891.

Figure 6 Generic schema for patient demographics.
The Patient concept can have any number of demo-
graphic attributes. Each demographic attribute has a
type and a value.

actly which events can be connected to one another
and in what manner. The advantage of this schema is
that new relations between events (e.g., causality) can
easily be added by defining new instances of Event-
Relation in the dictionary.

Repository Implementation

The generic repository schema is easily converted into
a database. The most practical choice now for a large-
scale clinical information system in terms of speed
and storage capacity is a relational database,13-15 al-
though some object-oriented databases may be con-
sidered. Each concept in the schema becomes a table
in the relational database in the following way’?

1. The relations of a given concept that have atomic
domains (Date, Date-Time, Number, etc.) become
columns of the corresponding table, with the ap-
propriate data type (date, timestamp, integer, etc.).

[Service: SOOl]-
. . .
(related-to) ->[Related-Event: ROOl]
(related-to) ->[Related-Event: R002].

[Related-Event: ROOl]-
(type) ->[Occurs-In]
(event) ->[Encounter: EOOl].

[Related-Event: R002]-
(type) ->[Ordered-As]
(event) ->[Order: OOOl].

Figure 7 Generic schema for relations between clinical
events. The Service concept has two related events: an
order and an encounter. The two Related-Event concepts
specify the type of relation and the identifier of the re-
lated event.

JOHNSON, Generic Data Modeling

2. The key of the table is either a column correspond-
ing to the unique identifier of the concept or some
combination of columns that determines a unique
row of the table.

3. Conceptual relations that connect one concept to
another in the schema become “foreign key” col-
umns in the table. Additional columns must be
added to correspond to the key columns of the
referenced table.

As an example, consider the Patient concept as it is
defined in the conceptual schema of Figure 4 (before
the transformations of the previous section are ap-
plied). There are several atomic attributes: birthdate,
sex, ssn, address, and telephone. These become col-
umns with the following data types, respectively:
date, character (fixed length l), decimal (length 9),
character (maximum length 256), and decimal (length
10). (In real systems, Address would probably be bro-
ken down into multiple columns for street, city, state,
etc.) The unique identifier of Patient is the medical
record number, so this becomes the primary key col-
umn of the table. In this database, all people (patients,
providers, family members) can be grouped into a ta-
ble called Person, in which common attributes (such
as names) are stored. The supertype relation between
Patient and Person is implemented as a foreign key
by adding the unique identifier of the Person table
(Person ID) as a column of the Patient table (Table 1).

Using the generic schema obtained by transforma-
tions in the previous section (Fig. 6), a generic table
is created that can be called Demographic (Table 2).
The conceptual relation “attribute” in the generic
schema is implemented by adding a column for the
patient identifier (a foreign key). In this way, a given
patient may have any number of demographic attrib-
utes. (Further discussion of relation cardinality is be-
yond the scope of this paper.) The Demographic-Type
column will contain identifiers for birthdate, sex, ssn,
address, and telephone. The values for these various
demographics are stored in the Demographic-Value
column. Note that this column must store a wide va-
riety of data types (date, character, decimal). There are
several techniques to accommodate this diversity; the
simplest is to define the column as character data of
the maximum length necessary.

After generic transformations have been applied to a
conceptual schema for patient data and then imple-
mented as a relational database, the result is a data-
base with a small number of tables. The implemen-
tation of a generic clinical repository at Columbia-
Presbyterian Medical Center, operational now for five
years, demonstrates that approximately two dozen

generic tables are adequate to support a complex clin-
ical information system.“82o This design is similar to
that used by earlier systems, although these designs
did not use relational technology.‘-5 Each generic table
may eventually hold tens or hundreds of millions of
rows of patient data if the repository is used as a lon-
gitudinal record from which no information can be
deleted.

The database schema focuses on patient events; thus,
most tables will have a column corresponding to the
“recipient” relation in the repository schema. The do-
main of this column is patient identifiers (medical rec-
ord numbers). Depending on the database software
employed to implement the repository schema, the
patient identifier column can be used to:

1. Index rows of the tables, providing fast access to
patient events when a particular patient identifier
is given.

2. Cluster rows on physical storage, further improv-
ing queries that retrieve data of a single patient by
reducing the disk pages that must be examined by
the database management system (DBMS).

3. Distribute data across different disks, enabling que-
ries about different patients to execute in parallel.

4. Distribute data across different servers, reducing
the transaction load on a given server.

One of the advantages of the generic design is that
few relational joins are required when retrieving data.
Queries that join data from multiple tables may in-
volve a large number of disk accesses and may require
several seconds or even minutes to complete. Because
the generic design employs so few tables, related data
tend to be stored in the same table.17-19 For example,
using generic transformations, all observational data,
such as laboratories, radiology, pathology, drug ad-
ministration, etc., may be stored in a single table. Any
query that compares data in this table (e.g., laboratory
and drug administration data) may be satisfied with-
out an expensive join.

Discussion

How Generic Should the Repository Be?

Applying the transformations of Appendix A to the
sample schema in Figures 3 and 4 yields the following
repository schema:

Journal of the American Medical Informatics Association Volume 3 Number 5 Sep / Oct 1996 337

[Concept]-
(related-to) +[Related-Concept].

[Related-Concept]-
(type) -+[Relation]
(concept) +[Concept].

The dictionary would provide a type hierarchy of
Concepts and Relations, with various names and
identifiers for each, and it would contain semantics
for the system, specifying which concepts are related
to each other. This model could be implemented in a
relational database with two tables. However, none of
the techniques described in the previous section for
physically managing these tables would apply, since
there is no patient identifier. Thus, this schema is far
too general.

At the other extreme, the schema in Figures 4 and 5
might be implemented directly as the clinical reposi-
tory. This design might work well for a clinical re-
search database, but it would perform poorly for pa-
tient care applications. Such a schema tends to spread
a single patient’s data across many tables. When data
are retrieved, a large number of joins may be required,
resulting in sluggish response times. A further prob-
lem is that this relational database would have very
specific names for columns, derived from the concep-
tual relations in the schema (as is seen in the previous
section for the Patient table). If any conceptual rela-
tion has been omitted from the schema, a table may
have to be changed, and such schema changes can
have an enormous impact.“,” With tables containing
millions of rows, the cost of physically reorganizing
data can be very high. If changes are frequent (typical
in large, heterogeneous environments like academic
medical centers), this architecture is unworkable.

Limitations of Generic Data Modeling

Generic data modeling entails an optimization of the
clinical schema: the schema should contain as much
semantics as possible to provide a useful structure for
clinical events, but it should be sufficiently “open
ended” to allow for flexibility. Experience with the
clinical information system at Columbia-Presbyterian
Medical Center suggests that a database schema based
on clinical events having roughly the granularity dis-
cussed in this article (see Conceptual Schema for Clin-
ical Data, above) results in a good tradeoff between
flexibility and performance.”

However, these advantages still come at a certain
price. The process of flattening the conceptual schema
produces a useful generic schema, but constraints
about the clinical domain are removed from the re-
pository. In certain implementations, losing these con-
straints may introduce an inconsistent use of data in

any computer applications that interact with the re-
pository. For example, the generic schema may re-
quire that providers participate in clinical events, but
it may not control the identifiers used for providers
throughout the institution; without centralized con-
trol, different hospital departments may report which
providers are involved in an event but may employ
identifiers that differ from those of other departments.
It was mentioned earlier in this article (see Filtering
Out Patient-Invariant Constructs, above) that con-
straints that operate on a finer granularity than the
clinical repository could, in principle, be enforced by
a central data dictionary. For example, when storing
data in the repository, such a centralized resource
could be used to translate provider identifiers into a
standardized representation (just as identifiers for
medications and other data elements must be trans-
lated). Few clinical information systems have imple-
mented this design to its fullest extent. Thus, large,
heterogeneous organizations may have to tolerate a
certain amount of inconsistency.

On the other hand, the lack of specificity that arises
from generic data modeling has certain strategic ad-
vantages. Because the clinical domain is so complex,
obtaining agreement across the institution on a wide
range of data is a long and difficult process. The ge-
neric model can be viewed as the core that comprises
those clinical data on which there is certain agreement
and which are thought to change in structure at the
slowest rate. This core enables integration efforts to
get started, and it supports an incremental approach
to large-scale information system development.6

This paper has drawn attention to the serious prob-
lems in creating clinical information systems that can
adapt to changing requirements. Managing a patient
database schema in a production environment over
any significant period of time presents enormous de-
sign challenges. The behavioral aspects of clinical in-
formation systems (“processes,” “methods,” or “ser-
vices”) present even greater difficulties, since these
tend to be the most volatile characteristic of an infor-
mation system.8 It is not clear that partitioning the
conceptual schema into a repository of generic objects
and a “dictionary” of specific objects can accommo-
date changes in system behavior. In the simple client-
server architecture described in this paper, clients
share repository data but are responsible for their own
processing. In the future, architectures using “medi-
ators” that combine both data and process in one
schema may overcome these limitations.”

Conclusion
A clinical repository must support many diverse ap-
plications. The repository must provide continuous

338 JOHNSON, Generic Data Modeling

access to data while it accommodates constant
changes with respect to the needs of applications. In
particular, the repository schema must be able to
evolve without having an adverse effect on the appli-
cations. Traditionally, clinical information systems
have addressed this problem by employing a generic
schema for the repository, usually in combination
with a dictionary of data elements.

In recent years, techniques of data modeling have
evolved that enable the construction of large, detailed
models of the information used in a domain. These
formal techniques are essential in health care because
of the size and complexity of this field. Although re-
lational database technology has made tremendous
improvements since the early days of clinical infor-
mation systems, traditional approaches to database
design have failed to produce information systems
that can perform efficiently for large patient care ap-
plications. This paper offers a methodology that rec-
onciles detail-oriented data modeling with perfor-
mance-oriented database design. The techniques of
generic data modeling may be employed to produce
efficient, flexible database designs that can be used in
operational systems.

References n

1. Stead WW, Hammond WE. Computer-based medical
records: the centerpiece of TMR. MD Comput. 1988;5:48-
62.

2. McDonald CJ, Blevins L, Tierney WM, Martin DK. The Re-
genstrief medical record. MD Comput. 1988;5:34-47.

3. Whiting-O’Keefe QE, Whiting A, Henke J. The STOR clini-
cal information system. MD Comput. 1988;5:8-21.

4. Grandia LD, Pryor TA, Willson DF, et al. Building a com-
puter-based patient record system in an evolving integrated
health system. In: Steen EB (ed). First Annual Nicholas E.
Davies CPR Recognition Symposium. Washington, DC:
Computer-based Patient Record Institute, 1995:3-32.

5. Curtis C. A computer-based patient record emerging from
the public sector: the decentralized hospital computer pro-
gram. In: Steen EB (ed). First Annual Nichols E. Davies CPR
Recognition Symposium. Washington, DC: Computer-based
Patient Record Institute, 1995:53-93.

6. Johnson SB, Forman B, Cimino JJ, Hripcsak G, et al. A tech-
nology perspective on the computer-based patient record.
In: Steen EB (ed). First Annual Nicholas E. Davies CPR Rec-
ognition Symposium. Washington, DC: Computer-based
Patient Record Institute, 1995:35-51.

7. Batini C, Ceri S, Navathe S. Conceptual Database Design:
An Entity-Relationship Approach. Redwood City, CA: Ben-
jamin/Cummings Publishing, 1992.

8. Coad P, Yourdan E. Object-Oriented Analysis, 2nd ed. En-
glewood-Cliffs, NJ: Prenctice-Hall, 1991.

9. Date C. Introduction to Database Systems, 6th ed. New
York: Addison-Wesley, 1995.

10. Fleming C, Van Halle 8. Handbook of Relational Database
Design. New York: Addison-Wesley, 1989.

11. Johnson SB, Friedman C, Cimino JJ, Hripcsak G, Clayton
PD. Conceptual data model for a central patient database.

In: Clayton PD (ed). Fifteenth Symposium on Computer
Applications in Medical Care. New York: McGraw-Hill,
1992:381-5.

12. Gouveira-Oliveira A, Lopes L. Formal representation of a
conceptual data model for the patient-based medical record.
In: Safran C (ed). Seventeenth Symposium on Computer
Applications in Medical Care. New York: McGraw-Hill,
1994:466-70.

13. Simon AR. Strategic Database Management Technology:
Management for the Year 2000. San Francisco: Morgan
Kaufman, 1995.

14. Sjoberg D. Quantifying schema evolution. Information and
Software Technology, 1993;13:35-44.

15. Dowgiallo E. A landmark year in review. Database Pro-
gramming and Design, 1995, December (special supple-
ment):54-6.

16. Wiederhold G. Modeling and system maintenance. In: Pa-
pazoglou N (ed). OOER ‘95: Object Oriented Relationship
Modeling. Springer Lecture Notes in Computer Science.
New York: Springer-Verlag, 1995(1021):1-20.

17. Friedman C, Hripcsak G, Johnson SB, Cimino JJ, Clayton
PD. A generalized relational scheme for an integrated clin-
ical database. In: Miller RA (ed). Fourteenth Symposium on
Computer Applications in Medical Care. Washington, DC:
IEEE Computer Society Press, 1990:335-9.

18. Johnson SB, Hripcsak G, Chen J, Clayton PD. Accessing the
Columbia clinical repository. In: Ozbolt J (ed). Eighteenth
Symposium on Computer Applications in Medical Care.
Philadelphia: Hanley & Belfus, 1994:281-5.

19. Dolin RH. A high-level object-oriented model for repre-
senting relationships in an electronic medical record. In: Oz-
bolt J (ed). Eighteenth Symposium on Computer Applica-
tions in Medical Care. Philadelphia: Hanley & Belfus, 1994:
514-18.

20. Barrows RC, Johnson SB. A data model that captures clinical
reasoning about patient problems. In: Gardner R. (ed).
Nineteenth Symposium on Computer Applications in Med-
ical Care. Philadelphia: Hanley & Belfus, 1995:402-5.

21. Giordano R. Repeating datagroups: which way do we go?
Database Programming and Design. 1992;5:47-51.

22. Cimino JJ, Hripcsak G, Johnson SB, Clayton PD. Designing
an introspective, multi-purpose controlled medical vocab-
ulary. In: Kingsland CL (ed). Thirteenth Symposium on
Computer Applications in Medical Care. Washington, DC:
IEEE Computer Society Press, 1989:513-18.

23. Linnarssen R, Wigertz OB. The data dictionary: controlled
vocabulary for integrating clinical databases and medical
knowledge bases. Methods lnf Med. 1989;28:78-85.

24. Van Ginneken AM, Stam H, Duiterhout JS. A powerful
macro-model for the computer patient record. In: Ozbolt J
(ed). Eighteenth Symposium on Computer Applications in
Medical Care. Philadelphia: Hanley & Belfus, 1994:496-500.

25. Essin DJ, Lincoln TL. Implementing a low-cost computer-
based patient record: a controlled vocabulary reduces da-
tabase design complexity. In: Gardner R (ed). Nineteenth
Symposium on Computer Applications in Medical Care.
Philadelphia: Hanley & Belfus, 1995:431-5.

26. Sowa JF. Conceptual Structures: Information Processing in
Mind and Machine. Reading, MA: Addison-Wesley, 1984.

27. Chen C. The entity relationship model: toward a unified
view of data. ACM Transactions on Database Systems, 1977
(March).

28. Wiederhold G, El-Masri R. The structural model for data-
base design. In: Chen C (ed). Entity Relationship Approach
to System Analysis and Design. Amsterdam, The Nether-
lands: North Holland, 1980:237-57.

29. Friedman C, Cimino JJ, Johnson SB. A schema for repre-

Journal of the American Medical Informatics Association Volume 3 Number 5 Sep / Oct 1996 339

senting medical language applied to clinical radiology. J Am
Med Inform Assoc. 1994;1:233-48.

30. Campbell KE, Das AK, Musen MA. A logical foundation for
representation of clinical data. J Am Med Inform Assoc.
1994;1:218-32.

31. Bell DS, Pattison-Gordon E, Greenes R. Experiments in con-
cept modeling for radiographic image reports. J Am Med
Inform Assoc. 1994;1:249-62.

32. Baud R, Lovis C, Alpay L, et al. Modeling for natural lan-
guage understanding. In: Safran C (ed). Seventeenth Sym-

posium on Computer Applications in Medical Care. New
York: McGraw-Hill, 1994:289-93.

33. Essin DJ, Lincoln TL. An information model for medical
events. In: Ozbolt J (ed). Eighteenth Symposium on Com-
puter Applications in Medical Care. Philadelphia: Hanley
& Belfus, 1994:509-13.

34. Saltor F, Castellanos G, Garcia-Solace M. Overcoming sche-
matic discrepancies in interoperable databases. In: Hsoa
DK, Neuhold EJ, Sacks-Davis R (eds). Interoperable Data-
base Systems. New York: Elsevier, 1993:191-205.

APPENDIX A

Generic Transformations

Flattening

Given a canonical graph whose root is type A, together
with the set of canonical graphs whose root types are B,,
BZ, . . , B,, such that B, is a subtype of A, for 1 5 i 5 n:

WI-
(a4 -+[&I

i&l -4&l.

El-
@,,) -4Gl

ii,) -4cim1.

replace these canonical graphs with a single canonical
graph whose root is type A’, such that the arcs of this
graph are the union of the arcs of the original graph of
type A, plus all the arcs of the graphs of type B,:

[A’]-
(type) +[A1
(al) -4All
.

(an) +[A4
(b,J +K,,l
(b,J -&,I

i&A -+K”ll
bJ -+Ll

ii) -4C”,l.

An additional arc with a distinct name such as “type”
must be added to the new graph. The value of this arc
specifies which subtype of A is denoted by a particular
instance.

Relation Merging

Given a canonical graph whose root is type A, with
arcs a,, a,, . . . , a, connecting to types (respectively)
B,, E, . . . , B,:

[Al-

replace this canonical graph with the following
graphs:

[Al -+W -4Rl.

PI +(a) +#I.
[&I -+(a) +P%l.
[&I -+(a) +P21.
. .
[&I +(a) +BJ.

Where R is a generic relation for A, and B is the least
supertype of B1, B2, . . . , B,. Each original relation a, is
promoted to a type A,, where each A, is a subtype of
R. These graphs maintain the original restrictions on
what can be connected to what.

This type hierarchy of relations can then be further
compressed using the flattening transform above:

IN --W +lR’l.

W’l-
(type) -4Rl
64 --@I.

